skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bramblett, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yue, Y; Garg, A; Peng, N; Sha, F; Yu, R (Ed.)
    This paper presents AutoEval, a novel benchmark for scaling Large Language Model (LLM) assessment in formal tasks with clear notions of correctness, such as truth maintenance in translation and logical reasoning. AutoEval is the first benchmarking paradigm that offers several key advantages necessary for scaling objective evaluation of LLMs without human labeling: (a) ability to evaluate LLMs of increasing sophistication by auto-generating tasks at different levels of difficulty; (b) auto-generation of ground truth that eliminates dependence on expensive and time-consuming human annotation; (c) the use of automatically generated, randomized datasets that mitigate the ability of successive LLMs to overfit to static datasets used in many contemporary benchmarks. Empirical analysis shows that an LLM's performance on AutoEval is highly indicative of its performance on a diverse array of other benchmarks focusing on translation and reasoning tasks, making it a valuable autonomous evaluation paradigm in settings where hand-curated datasets can be hard to obtain and/or update. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
    Planning in real-world settings often entails addressing partial observability while aligning with users’ requirements. We present a novel framework for expressing users’ constraints and preferences about agent behavior in a partially observable setting using parameterized belief-state query (BSQ) policies in the setting of goal- oriented partially observable Markov decision processes (gPOMDPs). We present the first formal analysis of such constraints and prove that while the expected cost function of a parameterized BSQ policy w.r.t its parameters is not convex, it is piecewise constant and yields an implicit discrete parameter search space that is finite for finite horizons. This theoretical result leads to novel algorithms that optimize gPOMDP agent behavior with guaranteed user alignment. Analysis proves that our algorithms converge to the optimal user-aligned behavior in the limit. Empirical results show that parameterized BSQ policies provide a computationally feasible approach for user-aligned planning in partially observable settings. 
    more » « less